# Métodos Espectroscópicos em Química Inorgânica (IQG-475)



#### Aulaı

Roberto B. Faria <u>faria@iq.ufrj.br</u> <u>www.iq.ufrj.br/~faria</u>



Departamento de Química Inorgânica

06/07/2024

## Espectroscopia UV-vis de compostos de coordenação

Transições d-d Diagramas de correlação Diagramas de Orgel Diagramas de Tanabe-Sugano Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

A soma das dimensões no campo octaédrico é igual à multiplicidade do momento angular orbital (*L*)

$$S (L = 0) \rightarrow 2L + 1 = 1$$
  

$$P (L = 1) \rightarrow 2L + 1 = 3$$
  

$$D (L = 2) \rightarrow 2L + 1 = 5$$
  

$$F (L = 3) \rightarrow 2L + 1 = 7$$
  

$$G (L = 4) \rightarrow 2L + 1 = 9$$
  

$$H (L = 5) \rightarrow 2L + 1 = 11$$
  

$$I (L = 6) \rightarrow 2L + 1 = 13$$

Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

Os termos espectroscópicos, quando sujeitos à um campo octaédrico, transformam-se da mesma forma que os orbitais atômicos de mesmo número quântico azimutal.

$$S (L = 0) \rightarrow S (l = 0) \rightarrow A_{1g}$$

$$P (L = 1) \rightarrow p (l = 1) \rightarrow T_{1U}$$

$$D (L = 2) \rightarrow d (l = 2) \rightarrow E_g + T_{2g}$$

$$F (L = 3) \rightarrow f (l = 3) \rightarrow A_{2U} + T_{1U} + T_{2U}$$

$$G (L = 4) \rightarrow g (l = 4) \rightarrow A_{1g} + E_g + T_{1g} + T_{2g}$$

$$H (L = 5) \rightarrow h (l = 5) \rightarrow E_U + T_{1U} + T_{1U} + T_{2U}$$

$$I (L = 6) \rightarrow i (l = 6) \rightarrow A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g}$$

Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

Mas como os elétrons nos compostos de coordenação ocupam os orbitais *d* que são simétricos em relação ao centro de inversão, todos os termos *u* são alterados para *g* 

$$\begin{split} S &\rightarrow A_{1g} \\ P &\rightarrow T_{1g} \\ D &\rightarrow E_g + T_{2g} \\ F &\rightarrow A_{2g} + T_{1g} + T_{2g} \\ G &\rightarrow A_{1g} + E_g + T_{1g} + T_{2g} \\ H &\rightarrow E_g + T_{1g} + T_{1g} + T_{2g} \\ I &\rightarrow A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g} \end{split}$$

Transformação dos termos espectroscópicos sujeitos à um campo octaédrico **fraco** 

 $S \rightarrow A_{1g}$   $P \rightarrow T_{1g}$   $D \rightarrow E_g + T_{2g}$   $F \rightarrow A_{2g} + T_{1g} + T_{2g}$   $G \rightarrow A_{1g} + E_g + T_{1g} + T_{2g}$   $H \rightarrow E_g + T_{1g} + T_{1g} + T_{2g}$   $I \rightarrow A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g}$ 

$$caso d^2$$

Início do desdobramento: Ligantes distantes do metal Condição de **"campo fraco**"



#### Condição de **campo forte** – ligantes próximos do metal – produto direto





As configurações possíveis para d<sup>2</sup> são:  $(t_{2g})^{2}$   $(t_{2g})^{1}(e_{g})^{1}$  $(e_{q})^{2}$ 

## Diagrama de correlação



#### Condição de **campo forte** – ligantes próximos do metal – produto direto





$$(t_{2g})^{2}$$
  
 $(t_{2g})^{1}(e_{g})^{2}$   
 $(e_{g})^{2}$ 



Multiplicidades de spin – caso  $d^2 - (t_{2q})^1 (e_q)^1$ 

| t <sub>2g</sub>                              | eg       | Σm <sub>s</sub> |
|----------------------------------------------|----------|-----------------|
| <u>X</u>                                     | <u>X</u> | 1, 0, 0, -1     |
| <u>×                                    </u> | <u> </u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u>X</u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u> </u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u>X</u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u> </u> | 1, 0, 0, -1     |



tripleto = 1, 0, -1 singleto = 0 Multiplicidades de spin – caso  $d^2 - (t_{2q})^1 (e_q)^1$ 

| t <sub>2g</sub>                              | eg       | Σm <sub>s</sub> |
|----------------------------------------------|----------|-----------------|
| <u>X</u>                                     | <u>X</u> | 1, 0, 0, -1     |
| <u>×                                    </u> | <u> </u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u>X</u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u> </u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u>X</u> | 1, 0, 0, -1     |
| <u> </u>                                     | <u> </u> | 1, 0, 0, -1     |

tripleto = 1, 0, -1 singleto = 0 24 microestados  $T_{2g} \otimes E_g = {}^{a}T_{1g} + {}^{b}T_{2g}$ 3a + 3b = 24

(a, b) só podem ser 1 ou 3

A única solução é: a = 1 + 3 (singletos e tripletos) b = 1 +3 (singletos e tripletos)

$$^{1}T_{1g} + ^{3}T_{1g} + ^{1}T_{2g} + ^{3}T_{2g}$$

Termo de menor energia em campo forte caso  $d^2 - (t_{2g})^1 (e_g)^1$ 



Regras de Hund\*:

- o termo mais estável é o de maior multiplicidade de spin
- o termo mais estável é o mais degenerado, T < E < A (não se aplica ao presente caso)
- embora não seja considerada uma regra de Hund: <sup>3</sup>T<sub>19</sub> < <sup>3</sup>T<sub>29</sub>

\*Figgis, B. N. Introduction to Ligand Fields, Robert E. Krieger Pub. Co., 1986. pg. 151

## Diagrama de correlação



#### Condição de **campo forte** – ligantes próximos do metal – produto direto





$$(t_{2g})^{2}$$
  
 $(t_{2g})^{1}(e_{g})^{2}$   
 $(e_{g})^{2}$ 



## Multiplicidades de spin – caso $d^2 - (t_{2q})^2$

| t <sub>2g</sub> | Σm <sub>s</sub> |
|-----------------|-----------------|
| <u>XX</u>       | 0               |
| <u> </u>        | 0               |
| <u> </u>        | 0               |
| <u>X X</u>      | 1, 0, 0, -1     |
| <u>X X</u>      | 1, 0, 0, -1     |
| <u> </u>        | 1, 0, 0, -1     |

tripleto = 1, 0, -1 singleto = 0 15 microestados  $T_{2g} \otimes T_{2g} = {}^{a}T_{1g} + {}^{b}T_{2g} + {}^{c}E_{g} + {}^{d}A_{1g}$ 3a + 3b + 2c + d = 15 (a, b, c, d) só podem ser 1 ou 3

Soluções possíveis: (3, 1, 1, 1) ou (1, 3, 1, 1) ou (1, 1, 3, 3)

$${}^{3}T_{1g} + {}^{1}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g} \text{ ou } {}^{1}T_{1g} + {}^{3}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g}$$
  
ou  ${}^{1}T_{1g} + {}^{1}T_{2g} + {}^{3}E_{g} + {}^{3}A_{1g}$ 

Como pelos termos espectroscópicos não temos  ${}^{3}E_{g}$  a última opção é descartada. E como só temos um termo  ${}^{3}T_{2g}$  a segunda opção também é descartada pois o  ${}^{3}T_{2g}$ teve que ser usado na configuração ( $t_{2g}$ )<sup>1</sup>( $e_{g}$ )<sup>1</sup>

$${}^{3}T_{1g} + {}^{1}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g}$$





### Não há o termo <sup>3</sup>E<sub>g</sub> Só há um termo <sup>3</sup>T<sub>2g</sub>

Termo de menor energia em campo forte caso d² – (t<sub>2g</sub>)²

$$3T_{1g} + {}^{1}T_{2g} + {}^{1}E_{g} + {}^{1}A_{1g}$$

Regras de Hund:

- o termo mais estável é o de maior multiplicidade de spin

- o termo mais estável é o mais degenerado, T < E < A

- embora não seja considerada uma regra de Hund:  ${}^{3}T_{10} < {}^{3}T_{20}$ 

## Diagrama de correlação



#### Condição de **campo forte** – ligantes próximos do metal – produto direto





$$(t_{2g})^{2}$$
  
 $(t_{2g})^{1}(e_{g})^{2}$   
 $(e_{g})^{2}$ 



## Multiplicidades de spin – caso $d^2 - (e_q)^2$

| eg         | Σm <sub>s</sub> |
|------------|-----------------|
| <u>XX</u>  | 0               |
| <u> </u>   | 0               |
| <u>X X</u> | 1, 0, 0, -1     |

tripleto = 1, 0, -1 singleto = 0 6 microestados  $E_g \otimes E_g = {}^aA_{1g} + {}^bE_g + {}^cA_{2g}$ a + 2b + c = 6 (a, b, c) só podem ser 1 ou 3 matematicamente, b não pode ser 3

Soluções possíveis: (3, 1, 1) ou (1, 1, 3)

 ${}^{3}A_{1g} + {}^{1}E_{g} + {}^{1}A_{2g} \text{ ou } {}^{1}A_{1g} + {}^{1}E_{g} + {}^{3}A_{2g}$ 

Como d<sup>2</sup> não tem termo espectroscópico <sup>3</sup>A<sub>1g</sub> a primeira opção é descartada.

$${}^{1}A_{1g} + {}^{1}E_{g} + {}^{3}A_{2g}$$





#### Não há o termo <sup>3</sup>A<sub>19</sub>

# Termo de menor energia em campo forte caso d² – (e<sub>g</sub>)²

$${}^{1}A_{1g} + {}^{1}E_{g} + {}^{3}A_{2g}$$

Regras de Hund: - o termo mais estável é o de maior multiplicidade de spin - o termo mais estável é o mais degenerado, T < E < A - embora não seja considerada uma regra de Hund:  ${}^{3}T_{1g} < {}^{3}T_{2g}$ 

## Diagrama de correlação



### Caso d<sup>2</sup>

Deve-se notar que para uma configuração d<sup>2</sup> não ocorrem os casos de campo forte e campo fraco.

O termo de menor energia em <u>campo fraco</u> (<sup>3</sup>T<sub>1g</sub>) para a configuração d<sup>2</sup> conecta-se com o termo de menor energia em <u>campo forte</u> (<sup>3</sup>T<sub>1g</sub>), conforme mostrado no diagrama de correlação.

#### Condição de **campo forte** – ligantes próximos do metal – produto direto





As configurações possíveis para d<sup>3</sup> são:  $(t_{2g})^{3}$   $(t_{2g})^{2}(e_{g})^{1}$   $(t_{2g})^{1}(e_{g})^{2}$  $(e_{q})^{3}$ 

# Diagrama de correlação



#### Condição de **campo forte** – ligantes próximos do metal – produto direto





$$(t_{2g})^{3}$$
  
 $(t_{2g})^{2}(e_{g})^{3}$   
 $(t_{2g})^{1}(e_{g})^{2}$   
 $(e_{g})^{3}$ 

Multiplicidades de spin – caso  $d^3 - (t_{2q})^3$ 

Era de se esperar que considerássemos  $T_{2q} \otimes T_{2q} \otimes T_{2q}$ 

Entretanto, multiplicam-se por  $T_{2g}$  os termos para o caso d<sup>2</sup>  $(t_{2g})^2$  $T_{2g} \otimes T_{2g} = T_{1g} + T_{2g} + E_g + A_{1g}$ 

$$\begin{array}{l} \mathsf{A}_{1g} \otimes \mathsf{T}_{2g} = \mathsf{T}_{2g} \\ \mathsf{E}_{g} \otimes \mathsf{T}_{2g} = \mathsf{T}_{1g} + \mathsf{T}_{2g} \\ \mathsf{T}_{2g} \otimes \mathsf{T}_{2g} = \mathsf{A}_{1g} + \mathsf{E}_{g} + \mathsf{T}_{1g} + \mathsf{T}_{2g} \\ \mathsf{T}_{1g} \otimes \mathsf{T}_{2g} = ? \end{array}$$



## Multiplicidades de spin – caso $d^3 - (t_{2q})^3$

$$A_{1g} \otimes T_{2g} = T_{2g}$$

$$E_g \otimes T_{2g} = T_{1g} + T_{2g}$$

$$T_{2g} \otimes T_{2g} = A_{1g} + E_g + T_{1g} + T_{2g}$$

$$T_{1g} \otimes T_{2g} = A_{2g} + E_g + T_{1g} + T_{2g}$$

 $A_{1q}$  é descartado pois será usado na configuração  $(t_{2q})^2 (e_q)^1$ 

Colecionam-se os termos encontrados, evitando-se as repetições:

$$(t_{2g})^3 = T_{2g} + T_{1g} + E_g + A_{2g}$$

### Multiplicidades de spin – caso $d^3 - (t_{2q})^3$

 $t_{2q}$   $\Sigma_{ms}$ XX X 1/2, -1/2 <u>XX X 1/2, -1/2</u> <u>X XX </u> <sup>1</sup>/<sub>2</sub>, -<sup>1</sup>/<sub>2</sub> - <u>XX X</u>  $\frac{1}{2}, -\frac{1}{2}$ <u>X X  $\frac{1}{2}, -\frac{1}{2}$ </u>  $X XX \frac{1}{2}, -\frac{1}{2}$ <u>X X X</u> 3/2, -3/2, 3(1/2), 3(-1/2)

quarteto = 3/2, 1/2, -1/2, -3/2dubleto = 1/2, -1/2 20 microestados  $T_{2g} \otimes T_{2g} \otimes T_{2g} = {}^{a}T_{1g} + {}^{b}T_{2g} + {}^{c}E_{g} + {}^{d}A_{2g}$ 

3a + 3b + 2c + d = 20 (a, b, c, d) só podem ser 2 ou 4

Única solução possível: (2, 2, 2, 4)

$$^{2}T_{1g} + ^{2}T_{2g} + ^{2}E_{g} + ^{4}A_{2g}$$

Termo de menor energia em campo forte caso d<sup>3</sup> – (t<sub>2g</sub>)<sup>3</sup>

$$^{2}T_{1g} + ^{2}T_{2g} + ^{2}E_{g} + ^{4}A_{2g}$$

Regras de Hund:
o termo mais estável é o de maior multiplicidade de spin
o termo mais estável é o mais degenerado, T < E < A</li>
embora não seja considerada uma regra de Hund: <sup>3</sup>T<sub>19</sub> < <sup>3</sup>T<sub>29</sub>

# Diagrama de correlação


# Multiplicidades de spin – caso $d^3 - (t_{2q})^3$

Deve-se notar que para uma configuração d<sup>3</sup> não ocorrem os casos de campo forte e campo fraco.

O termo de menor energia em campo forte (<sup>4</sup>A<sub>2g</sub>) conecta-se com o termo menor energia em campo fraco (<sup>4</sup>A<sub>2g</sub>), conforme mostrado no diagrama de correlação.

## Condição de **campo forte** – ligantes próximos do metal – produto direto





$$(t_{2g})^{3}$$
  
 $(t_{2g})^{2}(e_{g})^{1}$   
 $(t_{2g})^{1}(e_{g})^{2}$   
 $(e_{g})^{3}$ 

Multiplicidades de spin – caso d<sup>3</sup> –  $(t_{2g})^2(e_g)^1$ Ao invés de fazermos a multiplicação  $T_{2g} \otimes T_{2g} \otimes E_g$ 

multiplicam-se por T<sub>2g</sub> os termos para o caso d<sup>2</sup> (t<sub>2g</sub>)<sup>1</sup>(e<sub>g</sub>)<sup>1</sup>

 $\mathsf{T}_{2g} \otimes \mathsf{E}_{g} = \mathsf{T}_{1g} + \mathsf{T}_{2g}$ 

$$T_{2g} \otimes T_{2g} = A_{1g} + E_{g} + T_{1g} + T_{2g}$$
$$T_{1g} \otimes T_{2g} = A_{2g} + E_{g} + T_{1g} + T_{2g}$$

e colecionam-se os termos sem repetição

$$d^{3}(t_{2g})^{2}(e_{g})^{1} = A_{1g} + E_{g} + T_{1g} + T_{2g} + A_{2g}$$

Multiplicidades de spin – caso  $d^3 - (t_{2q})^2 (e_q)^1$ 

$$(t_{2g})^{2}(e_{g})^{1} = A_{1g} + E_{g} + T_{1g} + T_{2g} + A_{2g}$$

Aqui aparece o termo  $A_{1g}$  que não foi usado no caso  $(t_{2g})^3$ 

Os termos espectroscópicos para um átomo d<sup>3</sup> são:

<sup>4</sup>F, <sup>4</sup>P, <sup>2</sup>H, <sup>2</sup>G, <sup>2</sup>F, <sup>2</sup>D(2), <sup>2</sup>P

Transformação dos termos espectroscópicos para elétrons em orbitais *d*, sujeitos à um campo octaédrico

<sup>4</sup>F, <sup>4</sup>P, <sup>2</sup>H, <sup>2</sup>G, <sup>2</sup>F, <sup>2</sup>D(2), <sup>2</sup>P



.

Multiplicidades de spin – caso  $d^3 - (t_{2g})^2 (e_g)^1$  $d^3 (t_{2g})^2 (e_g)^1 = A_{1g} + E_g + T_{1g} + T_{2g} + A_{2g}$ 

Como se vê, o termo  $A_{1g}$  só aparece em:  $G \rightarrow A_{1g} + E_g + T_{1g} + T_{2g}$ 

Assim, como só há um A<sub>1g</sub>, este será usado nesta configuração (t<sub>2g</sub>)<sup>2</sup>(e<sub>g</sub>)<sup>1</sup>, conectando-se com o termo <sup>2</sup>G, e por isso não foi usado na configuração (t<sub>2g</sub>)<sup>3</sup>



Multiplicidades de spin – caso  $d^3 - (t_{2g})^2 (e_g)^1$  $(t_{2g})^2 (e_g)^1 = A_{1g} + E_g + T_{1g} + T_{2g} + A_{2g}$ 

A determinação das multiplicidades de spin para esse caso é especialmente trabalhosa. Pode-se mostrar que é igual a\*

$${}^{2}A_{1g} + {}^{2}A_{2g} + 2 {}^{2}E_{g} + 2 {}^{2}T_{1g} + {}^{4}T_{1g} + 2 {}^{2}T_{2g} + {}^{4}T_{2g}$$

Regras de Hund:
o termo mais estável é o de maior multiplicidade de spin
o termo mais estável é o mais degenerado, T < E < A</li>
embora não seja considerada uma regra de Hund: 4T<sub>1g</sub> < 4T<sub>2g</sub>

\*Ballhausen, C. J. Introduction to Ligand Field Theory, McGraw-Hill, 1962. pg. 96



## Multiplicidades de spin – caso d<sup>3</sup>

$$(t_{2g})^{1}(e_{g})^{2} e(e_{g})^{3}$$

Estes termos não serão desenvolvidos aqui, mas pode-se mostrar que os resultados para cada um desses casos são:  $(t_{2g})^{1}(e_{g})^{2} = 2 \ ^{2}T_{1g} + 4T_{1g} + 2 \ ^{2}T_{2g}$  $(e_{g})^{3} = \ ^{2}E_{g}$ 













Atenção: não se aplicam as regras de Hund na condição de campo fraco







| Tipo d <sup>1</sup> | Tipo d <sup>2</sup>   |
|---------------------|-----------------------|
| dı                  | d²                    |
| d <sup>6</sup>      | d7                    |
| Tipo d¹ invertido   | Tipo d² invertido     |
| d4                  | <b>d</b> <sup>3</sup> |
| <b>d</b> 9          | d <sup>8</sup>        |

d<sup>5</sup> não tem desdobramento, sendo um único termo <sup>6</sup>S<sub>5/2</sub> (falso sexteto)



- B é um dos parâmetros de Racah, sendo função da repulsão entre os elétrons no átomo do metal.
- B' é o parâmetro B, alterado pela presença dos ligantes
- $\beta = B'/B, \beta < 1, é a razão nefelauxética$
- B é tabelado para cada metal
- (1- $\beta$ ) pode ser estimado por tabelas; (1- $\beta$ ) =  $h_x \times k_M$

## A Série Nefelauxética

- O termo **nefelauxético** vem do grego, significando "expansão da nuvem"
- B é um dos parâmetros de Racah, sendo função da repulsão entre os elétrons no átomo do metal.
- B' é o parâmetro B, alterado pela presença dos ligantes
- $\beta = B'/B$ ,  $\beta < 1$ , é a razão nefelauxética ou parâmetro nefelauxético
- B é tabelado para cada metal
- (1-  $\beta$ ) pode ser estimado por tabelas; (1-  $\beta$ ) =  $h_x \times k_M$
- Um baixo valor de β indica que os elétrons d do metal estão mais deslocalizados sobre os ligantes, correspondendo a um maior caráter covalente das ligações metal-ligante.
- A série nefelauxética é um ordenamento dos valores de  $\beta$  dos ligantes.

#### $|I^{-} < Br^{-} < CN^{-} < CI^{-} < ox^{2^{-}} < en < NH_{3} < H_{2}O < F^{-}$



- Termos de mesma simetria "se repelem"
- $v_1 = \Delta_0$

• 
$$v_2 = (9/5)\Delta_0 - x$$

• 
$$v_3 = (6/5)\Delta_0 + 15B' + x$$

• 
$$15B' = v_3 + v_2 - 3v_1$$

• Provando,  $(6/5)\Delta_{o} + 15B' + x$   $(9/5)\Delta_{o} - x$  $-3\Delta_{o}$ 

$$B' = (v_3 + v_2 - 3v_1)/15$$



Valores em  $cm^{-1}(1,2)$ V<sub>2</sub>  $v_1 = \Delta_0$  $v_{z}$ [CrCl<sub>6</sub>]<sup>3-</sup> 13.180 28.700 [CrF<sub>6</sub>]<sup>3-</sup> 14.900 22.700 34.400  $[Cr(ox)_{3}]^{3}$ 17.500 23.900  $[Cr(en)_{3}]^{3+}$ 21.800 28.500

 $\Delta_{o}(Cl^{-}) < \Delta_{o}(F^{-}) < \Delta_{o}(ox) < \Delta_{o}(en)$ 

$$B' = (v_3 + v_2 - 3v_1)/15$$

(1) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4ª ed., HarperCollins, 1993. pg. 447 (2) Lever, A. B. P. Inorganic Electronic Spectroscopy, Elsevier, 1969. pg. 275



# Valores em cm<sup>-1</sup> $v_1 = \Delta_0$ $v_2$ $v_3$ [CrCl\_6]<sup>3-</sup>13.18028.700—[CrF\_6]<sup>3-</sup>14.90022.70034.400[Cr(ox)\_3]<sup>3-</sup>17.50023.900—[Cr(en)\_3]<sup>3+</sup>21.80028.500—

B' =  $(34.400 + 22.700 - 3 \times 14.900)/15 = 827$ B (Cr<sup>3+</sup>) = 933 (tabelado)  $\beta = 827/933 = 0,886$ 

$$B' = (v_3 + v_2 - 3v_1)/15$$

## Estimando o parâmetro nefelauxético, β

- $(1 \beta) = h_{x} \times k_{M}$
- $(1-\beta) = h_x(F^-) \times k_M(Cr(III))$
- (1-β) = 0,8 × 0,21
- $(1-\beta) = 0,168$
- $\beta = 0.832$  (estimado por tabelas)
- O valor estimado de  $\beta$  é próximo do valor experimental (0,886)
- O valor experimental de β é próximo de 1, indicando pouca covalência na interação ligante-metal.

#### I<sup>-</sup> < Br<sup>-</sup> < CN<sup>-</sup> < CI<sup>-</sup> < ox<sup>2-</sup> < en < NH<sub>3</sub> < H<sub>2</sub>O < F<sup>-</sup>

### Fórmulas detalhadas - Casos d<sup>3</sup> e d<sup>8</sup>



Considerando-se a interação entre os termos T<sub>1g</sub>, os níveis de energia podem ser descrito pelas expressões:

- $4T_{1g}(P) = 7,5B' + 0,3\Delta_0 + (1/2)[225(B')^2 + \Delta_0^2 18\Delta_0B']^{(1/2)}$
- ${}^{4}T_{1g}(F) = 7,5B' + 0,3\Delta_{0} (1/2)[225(B')^{2} + \Delta_{0}^{2} 18\Delta_{0}B']^{(1/2)}$ 
  - ${}^{4}T_{2g} = -(1/5)\Delta_{0}$
- ${}^{4}A_{2g} = -(6/5)\Delta_{o}$

- 1) Lever, A. B. P. J. Chem. Educ. 45:711 (1968)
- 2) Gushikem, Y. *Quim. Nova 28*:153 (2005)
- 3) Lever, A. B. P. Inorganic Electronic Spectroscopy, Elsevier, 1968. Tabela 7.7, pg.183
- 4) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4ª ed., HarperCollins, 1993. pg. 447

## Fórmulas detalhadas - Casos d<sup>3</sup> e d<sup>8</sup>



Subtraindo-se os respectivos níveis de energia envolvidos em cada transição eletrônica, obtemos:

- $v_1 = \Delta_0$ •  $v_2 = 7,5B' + 1,5\Delta_0 - \frac{1}{2} [225(B')^2 + (\Delta_0)^2 - 18(B')\Delta_0]^{\frac{1}{2}}$
- $v_3 = 7,5B' + 1,5\Delta_0 + \frac{1}{2} [225(B')2 + (\Delta_0)^2 18(B')\Delta_0]^{\frac{1}{2}}$

• 
$$v_2 + v_3 = 15B' + 3\Delta_0$$

• Sabendo-se o valor de  $\Delta_0$  pela banda  $v_1$ , pode-se calcular B' pela fórmula de  $v_2$ , por tentativa.

- 1) Lever, A. B. P. J. Chem. Educ. 45:711 (1968)
- 2) Gushikem, Y. *Quim. Nova 28*:153 (2005)
- 3) Lever, A. B. P. Inorganic Electronic Spectroscopy, Elsevier, 1968. Tabela 7.7, pg.183
- 4) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4ª ed., HarperCollins, 1993. pg. 447

Valores em cm<sup>-1</sup>

 $v_1 = \Delta_0$  $v_2$  $v_3$  $[CrCl_6]^{3^-}$ 13.18028.700— $[CrF_6]^{3^-}$ 14.90022.70034.400 $[Cr(ox)_3]^{3^-}$ 17.50023.900— $[Cr(en)_3]^{3^+}$ 21.80028.500—

Determinação de B' por tentativa usando a fórmula  $v_2 = 7,5B' + 1,5\Delta_0 - \frac{1}{2} [225(B')^2 + (\Delta_0)^2 - 18(B')\Delta_0]^{\frac{1}{2}}$  $\Delta_0 = v_1 = 14.900$ 

> B (Cr<sup>3+</sup>) = 933 (tabelado)  $\beta$  = 896/933 = 0,960

 $\beta$  Estimado por tabelas = 0,832

Valores em cm<sup>-1</sup>

 $v_1 = \Delta_0$  $v_2$  $v_3$  $[CrCl_6]^{3^-}$ 13.18028.700— $[CrF_6]^{3^-}$ 14.90022.70034.400 $[Cr(ox)_3]^{3^-}$ 17.50023.900— $[Cr(en)_3]^{3^+}$ 21.80028.500—

Determinação de B' por tentativa usando a fórmula  $v_2 = 7,5B' + 1,5\Delta_0 - \frac{1}{2} [225(B')^2 + (\Delta_0)^2 - 18(B')\Delta_0]^{\frac{1}{2}}$  $\Delta_0 = v_1 = 17.500$ 

> B (Cr<sup>3+</sup>) = 933 (tabelado) β = 623/933 = 0,668

Estimando por tabelas  $(1 - \beta) = 1,5 \times 0,21 = 0,315$  $\beta = 0,685$ 

| B′   | V <sub>2</sub> |
|------|----------------|
| 1030 | 26550          |
| 500  | 22841          |
| 750  | 24865          |
| 700  | 24500          |
| 650  | 24115          |
| 620  | 23874          |
| 630  | 23955          |
| 625  | 23915          |
| 624  | 23907          |
| 623  | 23899          |

## Transições eletrônicas e espectro – caso d<sup>2</sup>



- Termos de mesma simetria "se repelem"
- $v_1 = (4/5)\Delta_0 + X$
- $v_2 = (4/5)\Delta_0 + \Delta_0 + X$
- $v_3 = (3/5)\Delta_0 + 15B' + 2x$

• 
$$15B' = v_3 + v_2 - 3v_1$$

• Provando,

 $(3/5)\Delta_{0} + 15B' + 2X$  $(4/5)\Delta_{0} + \Delta_{0} + X$  $-(12/5)\Delta_{0} - 3X$ 

$$B' = (v_3 + v_2 - 3v_1)/15$$

## Transições eletrônicas e espectro Caso d<sup>2</sup> (e também d<sup>7</sup>, campo fraco, termo mais estável <sup>4</sup>T<sub>1q</sub>)



Novamente, para complexos com ligantes de campo forte, a interação entre os termos  $T_{1g}$  torna-se muito intensa e as fórmulas tornam-se mais elaboradas.

- $v_1 = -7,5B' + 0,5\Delta_0 + \frac{1}{2} [225(B')^2 + (\Delta_0)^2 18(B')\Delta_0]^{\frac{1}{2}}$
- $v_2 = -7,5B' + 1,5\Delta_0 + \frac{1}{2} [225(B')^2 + (\Delta_0)^2 18(B')\Delta_0]^{\frac{1}{2}}$
- $v_3 = [225(B')^2 + (\Delta_0)^2 18(B') \Delta_0]^{\frac{1}{2}}$
- $v_3 2v_1 = 15B' \Delta_0$
- $v_3 2v_2 = 15B' 3\Delta_0$
- Como v<sub>2</sub> é uma transição de 2 elétrons, nem sempre é observada por ter baixa intensidade.
- Com base nessas equações pode-se calcular os valores de  $\Delta_0$  e B', por tentativa, que reproduzam os valores experimentais de  $v_1$ ,  $v_2$  e  $v_3$ .

# Transições eletrônicas e espectro – CAMPO FORTE caso d<sup>6</sup>, termo mais estável <sup>1</sup>A<sub>19</sub>

- $v_1 = -4B' + \Delta_0 + 86(B')^2 / \Delta_0$
- $v_2 = 12B' + \Delta_0 + 2(B')^2/\Delta_0$
- Com base nessas equações pode-se calcular os valores de  $\Delta_{o}$  e B', por tentativa, que reproduzam os valores experimentais de  $v_1$  e  $v_2$ .

Huheey, E. J.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry – Principles of Structure and Reactivity. 4<sup>a</sup> ed., HarperCollins College Publishers: Nova Iorque, 1993. pg. 447.

#### Transições eletrônicas e espectro

Nos casos d<sup>2</sup>, d<sup>3</sup> e d<sup>8</sup> as fórmulas para campo forte podem ser usadas na condição de campo fraco, fornecendo valores de  $\Delta_0$  e B' mais precisos.

# Diagrama de Orgel – d<sup>3</sup> (campo fraco)



- As energias dos termos, mudam com o valor da campo.
- Os termos de mesma simetria "se afastam".



# Diagrama de Orgel – d<sup>7</sup> (campo fraco)


# Diagramas de Tanabe-Sugano

São idênticos aos de Orgel, com as diferenças:

- São encontrados apenas para complexos octaédricos.
- Incluem informações de campo forte e campo fraco.
- Os eixos das abscissas e ordenadas são dados em Dq/B (ou  $\Delta_{o}$ /B) e E/B, respectivamente.
- Cada diagrama é válido para uma razão C/B específica, onde B e C são parâmetros de Racah que descrevem a energia de separação entre estados de mesma multiplicidade de spin.
- Os diagramas de Tanabe-Sugano que se encontram mais facilmente, referem-se a uma razão C/B que se adequam aos elementos da primeira série de transição.
- O termo de menor energia é sempre a abscissa (eixo horizontal).
- A linha vertical que aparece em alguns diagramas, separa as regiões de spin alto e spin baixo, correspondendo ao valor de Dq/B (ou  $\Delta_0$ /B) em que o termo de menor energia passa a ser outro.
- A principal utilização desses diagramas é na atribuição das bandas dos espectros eletrônicos (UV-vis) dos complexos, observando-se a regra de seleção de multiplicidade de spin ( $\Delta$ S = o).

## Diagramas de Tanabe-Sugano

Os diagramas de Tanabe-Sugano podem ser encontrados em muitos livros de Química Inorgânica, como, por exemplo, na referência indicada abaixo.

Ver Diagramas de Tanabe-Sugano para aulas. pptx

- Tanabe. Y.; Sugano, S. On the Absorption Spectra of Complex Ions. II, J. Phys. Soc. Japan, 1954, 9(5), 766-779
- Weller, M.; Overton, T.; Rourke, J.; Armstrong, F. Química Inorgânica, 6ª ed., Bookman: Porto Alegre, RS, 2017.
- Salles, M. R. Espectroscopia eletrônica dos compostos de coordenação, In: de Faria, R. F (Organizador), Química de Coordenação
  - Fundamentos e atualidades, 2ª ed., Editora Átomo: Campinas, SP, 2009. p. 215-259

|                          | $V_1$ |        |            | $v_2$ |        |                                    |
|--------------------------|-------|--------|------------|-------|--------|------------------------------------|
|                          | nm    | cm⁻¹   | ε/M⁻¹ cm⁻¹ | nm    | cm⁻¹   | ε/M <sup>-1</sup> cm <sup>-1</sup> |
| $K_3[CoF_6]$             | 877   | 11.400 |            | 690   | 14.500 |                                    |
| [Co(acac) <sub>3</sub> ] | 594   | 16.835 | 141        |       | _      |                                    |
| $[Co(NH_3)_6]Cl_3$       | 475   | 21.053 | 56         | 339   | 29.500 | 46                                 |
| $[Co(en)_3]Cl_3$         | 466   | 21.459 | 75         | 338   | 29.586 | 70                                 |
| $K_{3}[Co(CN)_{6}]$      | 311   | 32.154 | 206        | 258   | 38.760 | 148                                |

#### Sofre deformação Jahn-Teller (d<sup>6</sup>, campo fraco)

Lei de Lambert-Beer: Abs =  $[X_{75}]\varepsilon_x b$ 

Para uma molécula em um estado eletrônico degenerado, sempre ocorrerá uma distorção da geometria molecular para uma simetria menor, removendo assim a degeneração e reduzindo a energia do sistema.

### Distorções da geometria octaédrica



### Deformação tetragonal

### Distorções da geometria octaédrica



 $\delta_{2} << \delta_{1}$ 

A deformação tetragonal "out", diminui a repulsão dos ligantes no eixo z, sobre os orbitais d(z<sup>2</sup>), d(xz) e d(yz). Evidências da distorção Jahn-Teller Espectro ultravioleta-visível Ti<sup>3+</sup> (d<sup>1</sup>)



### Transições eletrônicas para um complexo d<sup>1</sup>



A deformação tetragonal "out", diminui a repulsão dos ligantes no eixo z, sobre os orbitais d(z<sup>2</sup>), d(xz) e d(yz).

A banda da transição eletrônica (xz,yz) → (xy), só seria vista no infravermelho.

### Transições eletrônicas para um complexo d<sup>6</sup> – campo fraco



Somente as transições eletrônicas partindo dos orbitais (xz,yz) estão indicadas devido à restrição da regra de multiplicidade de spin.

A banda da transição eletrônica (xz,yz) → (xy), só seria vista no infravermelho.

|                          | $v_{1}$ |        |            | $V_2$ |        |                                    |
|--------------------------|---------|--------|------------|-------|--------|------------------------------------|
|                          | nm      | cm⁻¹   | ε/M⁻¹ cm⁻¹ | nm    | cm⁻¹   | ε/M <sup>-1</sup> cm <sup>-1</sup> |
| $K_3[CoF_6]$             | 877     | 11.400 |            | 690   | 14.500 |                                    |
| [Co(acac) <sub>3</sub> ] | 594     | 16.835 | 141        |       | —      |                                    |
| $[Co(NH_3)_6]Cl_3$       | 475     | 21.053 | 56         | 339   | 29.500 | 46                                 |
| $[Co(en)_3]Cl_3$         | 466     | 21.459 | 75         | 338   | 29.586 | 70                                 |
| $K_3[Co(CN)_6]$          | 311     | 32.154 | 206        | 258   | 38.760 | 148                                |

#### Sofre deformação Jahn-Teller (d<sup>6</sup>, campo fraco)

Lei de Lambert-Beer: Abs =  $[X]\varepsilon_x b$ 

|                          | $V_1$ |        |            |
|--------------------------|-------|--------|------------|
|                          | nm    | cm⁻¹   | ε/M⁻¹ cm⁻¹ |
| $K_3[CoF_6]$             | 877   | 11.400 |            |
| [Co(acac) <sub>3</sub> ] | 594   | 16.835 | 141        |
| $[Co(NH_3)_6]Cl_3$       | 475   | 21.053 | 56         |
| $[Co(en)_3]Cl_3$         | 466   | 21.459 | 75         |
| $K_{3}[Co(CN)_{6}]$      | 311   | 32.154 | 206        |

| V <sub>2</sub> |        |            |
|----------------|--------|------------|
| nm             | cm⁻¹   | ε/M⁻¹ cm⁻¹ |
| 690            | 14.500 | —          |
| —              | —      | —          |
| 339            | 29.500 | 46         |
| 338            | 29.586 | 70         |
| 258            | 38.760 | 148        |
|                |        |            |

O ligante de campo fraco (acac), bidentado, impede a deformação Jahn-Teller.

Lei de Lambert-Beer: Abs =  $[X]\varepsilon_x b$ 







 $[Co(en)_3]Cl_3$ 



K<sub>3</sub>[Co(CN)<sub>6</sub>]



|                          | V <sub>1</sub> |        |            | ν <sub>2</sub> | $V_2$  |                                    |  |
|--------------------------|----------------|--------|------------|----------------|--------|------------------------------------|--|
|                          | nm             | cm⁻¹   | ε/M⁻¹ cm⁻¹ | nm             | cm⁻¹   | ε/M <sup>-1</sup> cm <sup>-1</sup> |  |
| $K_3[CoF_6]$             | 877            | 11.400 |            | 690            | 14.500 | —                                  |  |
| [Co(acac) <sub>3</sub> ] | 594            | 16.835 | 141        | —              | —      |                                    |  |
| $[Co(NH_3)_6]Cl_3$       | 475            | 21.053 | 56         | 339            | 29.500 | 46                                 |  |
| $[Co(en)_3]Cl_3$         | 466            | 21.459 | 75         | 338            | 29.586 | 70                                 |  |
| $K_3[Co(CN)_6]$          | 311            | 32.154 | 206        | 258            | 38.760 | 148                                |  |

Pelo diagrama de Tanabe-Sugano para d<sup>6</sup> as transições esperadas são: Campo fraco (apenas uma transição permitida)

 ${}^{5}T_{2g} \rightarrow {}^{5}E_{g}$ Campo forte (várias transições permitidas, mas apenas duas de baixa energia)

$${}^{1}A_{1g} \rightarrow {}^{1}I_{1g}$$
$${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$$

|                          | $v_{1}$ |        |            | $V_2$ |        |            |
|--------------------------|---------|--------|------------|-------|--------|------------|
|                          | nm      | cm⁻¹   | ε/M⁻¹ cm⁻¹ | nm    | cm⁻¹   | ε/M⁻¹ cm⁻¹ |
| $K_3[CoF_6]$             | 877     | 11.400 |            | 690   | 14.500 | —          |
| [Co(acac) <sub>3</sub> ] | 594     | 16.835 | 141        | —     | —      |            |
| $[Co(NH_3)_6]Cl_3$       | 475     | 21.053 | 56         | 339   | 29.500 | 46         |
| $[Co(en)_3]Cl_3$         | 466     | 21.459 | 75         | 338   | 29.586 | 70         |
| $K_3[Co(CN)_6]$          | 311     | 32.154 | 206        | 258   | 38.760 | 148        |

As duas bandas do complexo K<sub>3</sub>[CoF<sub>6</sub>], não podem ser explicadas pelo diagrama de Tanabe-Sugano pois a geometria não é mais octaédrica, devido à deformação Jahn-Teller.

## Espectros eletrônicos – Regras de seleção

Lei de Lambert-Beer: Abs =  $[X]\varepsilon_x b$ 

- Transições eletrônicas permitidas apresentam absortividade molar, ε, da ordem de 20.000 a 50.000 M<sup>-1</sup> cm<sup>-1</sup>
- Todas as transições nos complexos octaédricos são proibidas pela Regra de Laporte:

São permitidas apenas as transições u ↔ g.

Com isso, 10 < ε < 1.000

• Para transições que também violem a regra de multiplicidade de spin,  $\Delta S = 0$ , temos duas proibições, fazendo com que  $\varepsilon < 1$ 

### Espectros UV-vis – Co<sup>2+</sup> (d<sup>7</sup>)

- A comparação dos espectros dos complexos [Co(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup> e [CoCl<sub>4</sub>]<sup>2-</sup> mostra que as bandas do complexo tetraédrico são muito mais intensas.
- Explica-se pelo fato da geometria tetraédrica não ter centro de inversão, fazendo com que as transições eletrônicas no [CoCl<sub>4</sub>]<sup>2-</sup> não possam ser proibidas pela Regra de Laporte





## Espectros UV-vis – Mn<sup>2+</sup> (d<sup>5</sup>)

- A comparação dos espectros dos complexos [Mn(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup> e [MnBr<sub>4</sub>]<sup>2-</sup> mostra que as bandas do complexo tetraédrico são muito mais intensas.
- Explica-se pelo fato da geometria tetraédrica não ter centro de inversão, fazendo com que as transições eletrônicas no [MnBr<sub>4</sub>]<sup>2-</sup> não possam ser proibidas pela Regra de Laporte
- Mesmo assim, as bandas do [MnBr<sub>4</sub>]<sup>2-</sup> têm 1 < ε < 4 M<sup>-1</sup> cm<sup>-1</sup>, pois são proibidas pela regra de multiplicidade de spin (ver diagrama de Tanabe-Sugano d<sup>5</sup>).



### Espectros UV-vis – Mn<sup>2+</sup> (d<sup>5</sup>)

- No caso do complexo  $[Mn(OH_2)_6]^{2+}$  temos duas proibições, Laporte e  $\Delta S = 0$ , fazendo com que 0,01 <  $\varepsilon$  < 0,04 M<sup>-1</sup> cm<sup>-1</sup>
- A largura das bandas também pode ser explicada considerando-se que o íon complexo está vibrando, o que leva ao alargamento da banda.
- As bandas correspondentes às transições que vão para termos que pouco mudam de energia com o valor do campo, são mais finas:
  v<sub>1</sub> em 18.000 cm<sup>-1</sup>, banda larga, <sup>6</sup>A<sub>1g</sub> → <sup>4</sup>T<sub>1g</sub> (que desce fortemente)
  v<sub>2</sub> em 23.000 cm<sup>-1</sup>, banda larga, <sup>6</sup>A<sub>1g</sub> → <sup>4</sup>T<sub>2g</sub> (que desce fortemente)
  v<sub>3</sub> em 25.000 cm<sup>-1</sup>, banda fina, <sup>6</sup>A<sub>1g</sub> → <sup>4</sup>E<sub>g</sub> (que, praticamente, não se altera com a variação de Δ<sub>0</sub>)
  v<sub>4</sub> em 26.000 cm<sup>-1</sup>, banda fina, <sup>6</sup>A<sub>1g</sub> → <sup>4</sup>A<sub>1g</sub> (que, praticamente, não se altera com a variação de Δ<sub>0</sub>)

## Espectros UV-vis – Cu<sup>2+</sup> (d<sup>9</sup>)

- A adição de NH3 à uma solução azul de [Cu(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup> torna a cor azul mais intensa.
- À princípio, poder-se-ia pensar que estaria se formando um complexo tetraédrico com o ligante NH3, que não tem a proibição de Laporte.
- Mas o que ocorre é a substituição gradual dos ligantes água pelo ligante NH3, formando complexos octaédricos [Cu(NH<sub>3</sub>)<sub>x</sub>(OH<sub>2</sub>)<sub>6-x</sub>]<sup>2+</sup>
- A cor azul do [Cu(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup>, é devido a cauda da banda com máximo no infravermelho próximo, que absorve um pouco do vermelho e do laranja, cujas cores complementares são o verde e o azul.
- Como o ligante NH3 é de campo mais forte que a água, quanto mais ligantes NH3 tiver o complexo, mais a banda desloca-se para o visível, aumentando a intensidade da cor.

### Espectros UV-vis – Cu<sup>2+</sup> (d<sup>9</sup>)





Ver espectros – Fig. 21-H-5, Cotton e Wilkinson (1980)